2015年9月25日星期五

Lintcode: Unique Paths II

Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
Have you met this question in a real interview? 
Yes

Example
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
The total number of unique paths is 2.
Note
m and n will be at most 100.
Tags Expand 


DP:
1. dp(x, y) ---- how many ways for point go from (0, 0) to (x, y)
2. if(Rout(x, y) == 1) dp(x, y) = 0;
    else dp(x, y) = dp(x - 1, y) + dp(x, y - 1)
3. initial state: dp(0, 0) = 1;
    when x = 0: if no obstacle dp(0, y) = dp(0, y -1) else 0;
   when y = 0: if no obstacle dp(x, 0) = dp(x - 1, 0) else 0;

Time: O(m*n)
Space: O(mn) -- can be optimized
Format will be better if seperate situations when x = 0 and y = 0 into two another loops
reference: http://yucoding.blogspot.com/2013/04/leetcode-question-117-unique-path-ii.html


 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class Solution {
public:
    /**
     * @param obstacleGrid: A list of lists of integers
     * @return: An integer
     */ 
    int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
        // write your code here
        if(obstacleGrid.size() == 0) return 0;
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        vector<vector<int> > DP(m, vector<int>(n, 0));
        for(int i = 0; i < m; i++){
            for(int j = 0; j < n; j++){
                if(obstacleGrid[i][j] == 1) DP[i][j] = 0;
                else {
                    int left, up;
                    if(i == 0 && j == 0) {
                        DP[i][j] = 1;
                        continue;
                    }
                    if(i == 0) left  = 0;
                    else left = DP[i - 1][j];
                    if(j == 0) up = 0;
                    else up = DP[i][j - 1];
                    
                    DP[i][j] = left + up;
                }
            }
        }
        return DP[m - 1][n - 1];
    }
};




Lintcode second:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class Solution {
public:
    /**
     * @param obstacleGrid: A list of lists of integers
     * @return: An integer
     */ 
    int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
        // write your code here
        //dp[i][j] 
        //dp[i][j] = dp[i-1][j] + dp[i][j-1];
        //intial status: dp[0][0] = 1, dp[i][0]/dp[0][j] = 1;
        //dp[obstacle] = 0;
        if(obstacleGrid.size() == 0) return 0;
        int row = obstacleGrid.size();
        int col = obstacleGrid[0].size();
        vector<vector<int> > dp(row, vector<int>(col));
        if(obstacleGrid[0][0] == 1) return 0;
        dp[0][0] = 1;
        for(int i = 1; i < row; i++){
            if(obstacleGrid[i][0]) dp[i][0] = 0;
            else dp[i][0] = dp[i-1][0];
        }
        for(int j = 1; j < col; j++){
            if(obstacleGrid[0][j]) dp[0][j] = 0;
            else dp[0][j] = dp[0][j-1];
        }
        for(int i = 1; i < row; i++){
            for(int j = 1; j < col; j++){
                if(obstacleGrid[i][j]) dp[i][j] = 0;
                else dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[row - 1][col - 1];
    }
};

没有评论:

发表评论